The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Written by Mike James   
Sunday, 06 October 2024
Article Index
The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Prim's Algorithm In C#
Implementing Prim's algorithm
Listing

Listing

The complete listing is:

using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WpfApp1
{

    public partial class MainWindow : Window
    {
        const int size = 10;
        private Point[] Positions = new Point[size];
        private Single[,] Network =
                             new Single[size, size];
        private Random R = new Random();

        public MainWindow()
        {
            InitializeComponent();
        }

        private void setnet(Single[,] Net, Point[] Pos)
        {
            int maxlength = (int)(Math.Min(canvas1.Width,
                                    canvas1.Height) * 0.9);
            int minlength = maxlength / size;
            for (int i = 0; i < size; i++)
            {
                Pos[i].X = R.Next(minlength, maxlength);
                Pos[i].Y = R.Next(minlength, maxlength);
                for (int j = 0; j <= i; j++)
                {
                    Net[i, j] = distance(Pos[i], Pos[j]);
                    Net[j, i] = Net[i, j];
                    if (i == j) Net[i, j] = 0;
                }
            }
        }

        private Single distance(Point a, Point b)
        {
            return (Single)Math.Sqrt((a.X - b.X) *
                                        (a.X - b.X) +
                                         (a.Y - b.Y) *
                                          (a.Y - b.Y));
        }

        private void shownet(Single[,] Net)
        {
            canvas1.Children.Clear();
            Line myLine;
            for (int i = 0; i < size; i++)
            {
                for (int j = 0; j < i; j++)
                {
                    if (Net[i, j] != 0)
                    {
                        myLine = new Line();
                        myLine.Stroke = Brushes.Black;
                        myLine.X1 = Positions[i].X;
                        myLine.X2 = Positions[j].X;
                        myLine.Y1 = Positions[i].Y;
                        myLine.Y2 = Positions[j].Y;
                        myLine.StrokeThickness = 1;
                        canvas1.Children.Add(myLine);
                    }
                }
            }

            Rectangle myMarker;
            for (int i = 0; i < size; i++)
            {
                myMarker = new Rectangle();
                myMarker.Stroke = Brushes.Black;
                myMarker.Fill = Brushes.Red;
                myMarker.Height = 10;
                myMarker.Width = 10;
                myMarker.SetValue(Canvas.TopProperty,
                             Positions[i].Y - myMarker.Height / 2);
                myMarker.SetValue(Canvas.LeftProperty,
                              Positions[i].X - myMarker.Width / 2);
                canvas1.Children.Add(myMarker);
            }
        }


        void prims()
        {
            int[] included = new int[size];
            int[] excluded = new int[size];
            Single[,] finished = new Single[size, size];
            int start = 0;
            int finish = 0;
            for (int i = 0; i < size; i++)

            {
                excluded[i] = i;
                included[i] = -1;
            }
            included[0] = excluded[R.Next(size)];
            excluded[included[0]] = -1;
            for (int n = 1; n < size; n++)
            {
                closest(n, ref start, ref finish,
                                                included, excluded);
                included[n] = excluded[finish];
                excluded[finish] = -1;
                finished[included[n], included[start]] =
                            Network[included[n], included[start]];
                finished[included[start], included[n]] =
                            Network[included[start], included[n]];
            }
            shownet(finished);
        }

        private void closest(int n, ref int start,
          ref int finish, int[] included, int[] excluded)
        {
            Single smallest = -1;
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < size; j++)
                {
                    if (excluded[j] == -1) continue;
                    if (smallest == -1) smallest =
                         Network[included[i], excluded[j]];
                    if (Network[included[i], excluded[j]] >
                                           smallest) continue;
                    smallest = Network[included[i], excluded[j]];
                    start = i;
                    finish = j;
                }
            }
        }

        private void Button_Click_1(object sender,
                                                    RoutedEventArgs e)
        {

            canvas1.Width = 600;
            canvas1.Height = 600;
            setnet(Network, Positions);
            shownet(Network);
        }

        private void Button_Click_2(object sender,
                                                  RoutedEventArgs e)
        {
            prims();
        }
    }
}

Mike James, Founder and Chief Editor of I Programmer is a prolific author. In Deep C#: Dive Into Modern C#, published in September 2021, he provides a “deep dive” into various topics that are important or central to the language. By exploring the motivation behind these key concepts, which is so often ignored in the documentation, the intention is to be thought-provoking and to give developers confidence to exploit C#’s wide range of features.

Related Articles

The Minimum Spanning Tree - Prim's Algorithm In Python


Disk Drive Dangers - SMART and WMI

Getting access from an application to the hardware is never easy. If you want to know how well your disk drive is performing then there is a way of accessing the SMART data - including the temper [ ... ]



The Minimum Spanning Tree - Prim's Algorithm In Python

Finding the minimum spanning tree is one of the fundamental algorithms and it is important in computer science and practical programming. We take a look at the theory and the practice and discover how [ ... ]


Other Projects


Apache Syncope 4 Adds Live Sync
12/06/2025

Apache Syncope 4.0 Notturno has been released, with improvements including live sync,  OpenFGA integration, and a reworked persistence layer. Apache Syncope is an Open Source IAM (Identity A [ ... ]



Kotlin And Spring - A Love Story Unfolds
17/06/2025

JetBrains has made special arrangements with Spring to facilitate the framework's better integration with the Kotlin language. What can we expect from this new partnership?


More News

pico book

 

Comments




or email your comment to: comments@i-programmer.info



Last Updated ( Sunday, 06 October 2024 )