Data Science and Big Data Analytics

Author: EMC Education Services
Publisher: Wiley, 2015
Pages: 432
ISBN: 9781118876138
Print: 111887613X
Kindle: B00RXHVQF6
Aimed at: Programmers who need to analyze data
Rating: 4
Reviewed by: Kay Ewbank

The subtitle "Discovering, Analyzing, Visualizing and Presenting Data" indicates that this is another title on a currently hot topic.

This book aims to teach you about big data analytics, though the techniques discussed are well known statistical methods. There are individual chapters on the most commonly used techniques, each chapter covering the key concepts of the technique, the principles behind it, R code using it, and sample exercises illustrating its use.

 

Banner
 

 

The book starts with a chapter introducing big data analytics, looking briefly at what big data is before moving on to look at the ‘state of practice in analytics’. Having introduced the topic, the authors then move on to look at the lifecycle of data analytics – discovery, data preparation, model planning, and model building. The chapter ends with a sample case study showing the different stages in action, and the code and data samples can be downloaded so you can work through the exercises.

The programming language used throughout the book is R, and the next chapter looks at basic data analysis methods using R. The authors introduce the language, discuss exploratory data analysis, then look at hypothesis testing, difference of means, Wilcoxon Rank-Sum, and ANOVA.

 

 

From here onwards the chapters move on to different aspects of advanced analytical theory and methods, starting with a chapter on clustering with a good discussion of K-means. There are chapters on association rules, regression, classification, time series analysis and text analysis.

A chapter on technology and tools looks at MapReduce and Hadoop, though at an introductory level essentially saying what the different parts of the ecosystem are and what roles they play. A chapter on in-database analytics does a similar job with SQL. The book ends with a chapter putting the whole thing together.

I found the book to be quite formal in tone – it is essentially a textbook for the EMC Proven Professional Data Science Certification and is also used as the basis of the EMC MOOC Data Lakes For Big Data MOOC. However, the concepts are explained well, there are good examples, and the authors have picked a good middle route on the amount of technicality on the maths behind the statistical methods – not skimming over it, but not getting too bogged down on it either. 

 

To keep up with our coverage of books for programmers, follow @bookwatchiprog on Twitter or subscribe to I Programmer's Books RSS feed for each day's new addition to Book Watch and for new reviews.

Banner


Continuous Architecture In Practice (Addison-Wesley)

Author: Murat Erder, Pierre Pureur and Eoin Woods
Publisher: Addison-Wesley
Pages: 352
ISBN: 978-0136523567
Print: 0136523560
Kindle: ‎B08ZRTQGLJ
Audience: Software Architects
Rating: 3
Reviewer: Kay Ewbank

This book sets out the case for why software architecture is more important than ever, and in p [ ... ]



Database Design for Mere Mortals: 25th Anniversary Edition

Author: Michael J Hernandez
Publisher: Addison-Wesley
Pages: 680
ISBN: 978-0136788041
Print: 0136788041
Kindle: B08JLXKJ6S
Audience: Database developers
Rating: 5
Reviewer: Kay Ewbank

As the title of this book suggests, this is a title that has stood the test of time, and this updated 4th Edition has bee [ ... ]


More Reviews

 

Last Updated ( Friday, 01 June 2018 )