A new simulation method makes sand flow realistically for a small fraction of the computational cost of more direct methods. See if you agree after seeing the video.

There are two ways to create graphics that look like physical processes - you can use the physics to create an accurate simulation or you can just invent some heuristic rules that happen to produce graphics that look like the process. For example, if you want to create 3D fire you can take the basic laws of fluid flow and throw in some heat equations and some chemistry and before you know where you are you have a set of equations that are beyond the capabilities of even an array of GPUs, not to mention the time and effort you have to put into transforming the equations into something that you can solve numerically. And all you really wanted was something that looked like fire.

So it goes with the problem of animating 3D flows of granular materials - like sand in a timer or soil under an impact. The full dynamics have to take into account where every particle is and what effect each particle has on every other particle. This is a difficult problem, especially if you only want the result to look like sand. An approximation is clearly a good idea but the problem is how to create something that looks like sand.

 

 

timer

 

The obvious way to do the job is to treat sand as if it was a fluid - but simply doing this results in sand that flows more like water than sand.

Now we have a more realistic simulation of flowing sand and other granular materials in the work of Rahul Narain, Abhinav Golas, and Ming C (University of North Carolina at Chapel Hill). What they do is model the sand as a flowing liquid but moving under external forces and internal stress. The key idea is to model the interaction between the grains, the contact and frictional forces, as acting on the fluid. Instead of working with individual particles they simulate the behaviour of clumps of particles moving together as a block of simulated fluid.

Putting the whole thing more simply - they simulate the sand as a liquid but a liquid that behaves a lot more like sand than previous attempts. The proof of the sand simulation is in watching the video. So see if you agree that the sand really does look like sand.

            

 

More information

http://gamma.cs.unc.edu/granular/

Preprint of paper (PDF, 10.0 MB)

 

More NEWS

You Don't Need To Touch Type To Go Fast
10 Feb 2016 09:46 - Janet Swift

It is a sad fact that many programmers don't learn to type, despite the fact that the keyboard is their main tool of the trade. New research, however, suggests that this might not matter as much as you might think and you don't have to be ashamed that you are not using all your fingers.

Asm.js Goes All Edgy
27 Nov 2015 00:00 - Ian Elliot

Edge, Microsoft's browser replacement for IE, has been quick to drop the legacy technologies and just as quick to embrace the new stuff. The lastest new technology to make it into Edge is asm.js and there is a nice proof of principle that it is indeed faster. 

Other Articles