Machine Learning For .NET
Written by Kay Ewbank   
Tuesday, 15 January 2019

Microsoft has released an updated version of ML.NET, its a cross-platform, open source machine learning framework for .NET developers. The updated version has API improvements, better explanations of models, and support for GPU when scoring ONNX models.

ML.NET was announced at Build last year. Developers can use it to develop custom AI machine learning models that can then be included in their apps. You can create and use machine learning models targeting common tasks such as classification, regression, clustering, ranking, recommendations and anomaly detection. It supports deep-learning frameworks such as TensorFlow and interoperability through ONNX.


ML.NET includes Infer.NET as 'part of the ML.NET family'. Infer.NET is a cross-platform framework for running Bayesian inference in graphical models that can also be used for probabilistic programming. It was developed by Microsoft Research, and made open source last year, and in October was brought into the ML.NET family and its name changed to Microsoft.ML.Probabilistic.

The improvements to the new release start with the changes to the API. These make it simpler to carry out text data loading; and add a prediction confidence factor when you're using Calibrator Estimators. This shows a probability column that shows the probability of this example being on the predicted class.

There's also a new Key-Value mapping estimator that provides a way to specify the mapping between two values based on a keys list and a values list.

The developers have also released a preview of Visual Studio project templates for ML.NET. The templates are designed to make it easier to get started with machine learning.

ml templates for Visual Studio

In practical terms, one of the main changes to the new release is Feature Contribution Calculation (FCC). This shows which features are most influential for a model’s prediction on a particular data sample by working out how much each feature contributed to the model’s score for that particular data sample. The developers say that FCC is particularly important when you initially have a lot of features in your historic data and you want to work out which features to use. Using too many features can reduce the model’s performance and accuracy.






More Information


Visual Studio template gallery

Related Articles

Infer.NET Machine Learning Framework Now Open Source  

Google Provides Free Machine Learning For All

Machine Learning Superstar Andrew Ng Moving On

Haven OnDemand Offers Machine Learning As A Service

Azure Machine Learning Service Goes Live

Machine Learning Goes Azure - Azure ML Announced

To be informed about new articles on I Programmer, sign up for our weekly newsletter, subscribe to the RSS feed and follow us on Twitter, Facebook or Linkedin.


Let Oracle's Coding Assistant Do The Grunt Work

Oracle is getting into the coding assistants game. The aptly named "Oracle Code Assist" is going to be optimized for Java, SQL, and Oracle Cloud-based applications.

Andrew Tanenbaum Gains ACM Award

Andrew Tanenbaum has been awarded the 2023 ACM System Software Award for MINIX the operating system he created for teaching purposes and which was an important influence on Linux.

More News

kotlin book



or email your comment to:

Last Updated ( Tuesday, 15 January 2019 )