Data Science Ethics (Oxford University Press)
Friday, 15 July 2022

This book looks at data science ethics - all about what is right and wrong when conducting data science. David Martens looks at the ethical considerations that come from data science, and highlights different concepts and techniques that aid understanding, ranging from k-anonymity and differential privacy to homomorphic encryption and zero-knowledge proofs to address privacy concerns, techniques to remove discrimination against sensitive groups, and various explainable AI techniques.

<ASIN:0192847279>

Real-life cautionary tales further illustrate the importance and potential impact of data science ethics, including tales of racist bots, search censoring, government backdoors, and face recognition. The book is punctuated with structured exercises that provide hypothetical scenarios and ethical dilemmas for reflection that teach readers how to balance the ethical concerns and the utility of data.

Author: David Martens
Publisher: Oxford University Press
Date: June 2022
Pages: 272
ISBN: 978-0192847270
Print:0192847279
Audience: General
Level: Intermediate
Category: Data Science

dataethic

For recommendations of Big Data books see Reading Your Way Into Big Data in our Programmer's Bookshelf section.

For more Book Watch just click.

Book Watch is I Programmer's listing of new books and is compiled using publishers' publicity material. It is not to be read as a review where we provide an independent assessment. Some, but by no means all, of the books in Book Watch are eventually reviewed.

To have new titles included in Book Watch contact  BookWatch@i-programmer.info

Follow @bookwatchiprog on Twitter or subscribe to I Programmer's Books RSS feed for each day's new addition to Book Watch and for new reviews.

 

 

Banner
 


C# Programming, 3rd Ed (In Easy Steps)

Author: Mike McGrath
Publisher: Easy Steps
Date: April 2022
Pages: 192
ISBN: 978-1840789737
Print: 1840789735
Kindle: B09WPBZZCV
Audience: C# developers
Rating: 5
Reviewer: Mike James
An easy guide to C# - what could be better.



Quick Start Guide to Large Language Models

Author:  Sinan Ozdemir
Publisher:  Addison-Wesley
Pages: 288
ISBN: 978-0138199197
Print: 0138199191
Kindle: B0CCTZMFWF
Audience: LLM Beginners
Rating: 5
Reviewer: Mike James
We all want to know about LLMs, but how deep should you go?


More Reviews