The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Written by Mike James   
Sunday, 06 October 2024
Article Index
The Minimum Spanning Tree In C# - Prim's or Dijkstra Algorithm
Prim's Algorithm In C#
Implementing Prim's algorithm
Listing

Listing

The complete listing is:

using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WpfApp1
{

    public partial class MainWindow : Window
    {
        const int size = 10;
        private Point[] Positions = new Point[size];
        private Single[,] Network =
                             new Single[size, size];
        private Random R = new Random();

        public MainWindow()
        {
            InitializeComponent();
        }

        private void setnet(Single[,] Net, Point[] Pos)
        {
            int maxlength = (int)(Math.Min(canvas1.Width,
                                    canvas1.Height) * 0.9);
            int minlength = maxlength / size;
            for (int i = 0; i < size; i++)
            {
                Pos[i].X = R.Next(minlength, maxlength);
                Pos[i].Y = R.Next(minlength, maxlength);
                for (int j = 0; j <= i; j++)
                {
                    Net[i, j] = distance(Pos[i], Pos[j]);
                    Net[j, i] = Net[i, j];
                    if (i == j) Net[i, j] = 0;
                }
            }
        }

        private Single distance(Point a, Point b)
        {
            return (Single)Math.Sqrt((a.X - b.X) *
                                        (a.X - b.X) +
                                         (a.Y - b.Y) *
                                          (a.Y - b.Y));
        }

        private void shownet(Single[,] Net)
        {
            canvas1.Children.Clear();
            Line myLine;
            for (int i = 0; i < size; i++)
            {
                for (int j = 0; j < i; j++)
                {
                    if (Net[i, j] != 0)
                    {
                        myLine = new Line();
                        myLine.Stroke = Brushes.Black;
                        myLine.X1 = Positions[i].X;
                        myLine.X2 = Positions[j].X;
                        myLine.Y1 = Positions[i].Y;
                        myLine.Y2 = Positions[j].Y;
                        myLine.StrokeThickness = 1;
                        canvas1.Children.Add(myLine);
                    }
                }
            }

            Rectangle myMarker;
            for (int i = 0; i < size; i++)
            {
                myMarker = new Rectangle();
                myMarker.Stroke = Brushes.Black;
                myMarker.Fill = Brushes.Red;
                myMarker.Height = 10;
                myMarker.Width = 10;
                myMarker.SetValue(Canvas.TopProperty,
                             Positions[i].Y - myMarker.Height / 2);
                myMarker.SetValue(Canvas.LeftProperty,
                              Positions[i].X - myMarker.Width / 2);
                canvas1.Children.Add(myMarker);
            }
        }


        void prims()
        {
            int[] included = new int[size];
            int[] excluded = new int[size];
            Single[,] finished = new Single[size, size];
            int start = 0;
            int finish = 0;
            for (int i = 0; i < size; i++)

            {
                excluded[i] = i;
                included[i] = -1;
            }
            included[0] = excluded[R.Next(size)];
            excluded[included[0]] = -1;
            for (int n = 1; n < size; n++)
            {
                closest(n, ref start, ref finish,
                                                included, excluded);
                included[n] = excluded[finish];
                excluded[finish] = -1;
                finished[included[n], included[start]] =
                            Network[included[n], included[start]];
                finished[included[start], included[n]] =
                            Network[included[start], included[n]];
            }
            shownet(finished);
        }

        private void closest(int n, ref int start,
          ref int finish, int[] included, int[] excluded)
        {
            Single smallest = -1;
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < size; j++)
                {
                    if (excluded[j] == -1) continue;
                    if (smallest == -1) smallest =
                         Network[included[i], excluded[j]];
                    if (Network[included[i], excluded[j]] >
                                           smallest) continue;
                    smallest = Network[included[i], excluded[j]];
                    start = i;
                    finish = j;
                }
            }
        }

        private void Button_Click_1(object sender,
                                                    RoutedEventArgs e)
        {

            canvas1.Width = 600;
            canvas1.Height = 600;
            setnet(Network, Positions);
            shownet(Network);
        }

        private void Button_Click_2(object sender,
                                                  RoutedEventArgs e)
        {
            prims();
        }
    }
}

Mike James, Founder and Chief Editor of I Programmer is a prolific author. In Deep C#: Dive Into Modern C#, published in September 2021, he provides a “deep dive” into various topics that are important or central to the language. By exploring the motivation behind these key concepts, which is so often ignored in the documentation, the intention is to be thought-provoking and to give developers confidence to exploit C#’s wide range of features.

Related Articles

The Minimum Spanning Tree - Prim's Algorithm In Python


SNTP Time Class

SNTP is a network protocol for obtaining an accurate time and it is an interesting exercise to build an SNTP client. In this article the language used is C# but it is easy enough to generalise to a la [ ... ]



The Minimum Spanning Tree - Prim's Algorithm In Python

Finding the minimum spanning tree is one of the fundamental algorithms and it is important in computer science and practical programming. We take a look at the theory and the practice and discover how [ ... ]


Other Projects


Bun 1.3 Adds Frontend Development Support
12/01/2026

Bun 1.3 has been released with improvements including support for frontend development and increased database support. 



Knuth's Xmas Lecture 2025 - The Knight's Adventure
24/12/2025

It's Xmas and Xmas means  Donald Knuth putting on his flamboyant Xmas top and talking to us about something that most of us know nothing about? Of course not. This year it's all about the Kn [ ... ]


More News

pico book

 

Comments




or email your comment to: comments@i-programmer.info

<ASIN:B09FTLPTP9>



Last Updated ( Sunday, 06 October 2024 )