The Minimum Spanning Tree - Prim's Algorithm
Written by Mike James   
Thursday, 25 February 2016
Article Index
The Minimum Spanning Tree - Prim's Algorithm
Prim's Algorithm In C#
Implementing Prim's algorithm
Listing

Listing

The complete listing is:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace Prim
{

 public partial class MainWindow : Window
 {
  const int size = 10;
  private Point[] Positions = new Point[size];
  private Single[,] Network =
                       new Single[size, size];
  private Random R = new Random();

  public MainWindow()
  {
   InitializeComponent();
  }
 
  private void setnet(Single[,] Net, Point[] Pos)
  {
   int maxlength = (int)(Math.Min(canvas1.Width,
                           canvas1.Height) * 0.9);
   int minlength = maxlength / size;
   for (int i = 0; i < size; i++)
   {
    Pos[i].X = R.Next(minlength, maxlength);
    Pos[i].Y = R.Next(minlength, maxlength);
    for (int j = 0; j <= i; j++)
    {
     Net[i, j] = distance(Pos[i], Pos[j]);
     Net[j, i] = Net[i, j];
     if (i == j) Net[i, j] = 0;
    }
   }
  }

  private Single distance(Point a, Point b)
  {
   return (Single)Math.Sqrt((a.X - b.X) *
                               (a.X - b.X) +
                                (a.Y - b.Y) *
                                 (a.Y - b.Y));
  }

  private void shownet(Single[,] Net)
  {
   canvas1.Children.Clear();
   Line myLine;
   for (int i = 0; i < size; i++)
   {
    for (int j = 0; j < i; j++)
    {
     if (Net[i, j] != 0)
     {
      myLine = new Line();
      myLine.Stroke = Brushes.Black;
      myLine.X1 = Positions[i].X;
      myLine.X2 = Positions[j].X;
      myLine.Y1 = Positions[i].Y;
      myLine.Y2 = Positions[j].Y;
      myLine.StrokeThickness = 1;
      canvas1.Children.Add(myLine);
     }
    }
   }

   Rectangle myMarker;
   for (int i = 0; i < size; i++) 
   {
    myMarker = new Rectangle();
    myMarker.Stroke = Brushes.Black;
    myMarker.Fill = Brushes.Red;
    myMarker.Height = 10;
    myMarker.Width = 10;
    myMarker.SetValue(Canvas.TopProperty,
          Positions[i].Y - myMarker.Height / 2);
    myMarker.SetValue(Canvas.LeftProperty,
          Positions[i].X - myMarker.Width / 2);
    canvas1.Children.Add(myMarker);
   }
  }

  private void button_Click(object sender,
                             RoutedEventArgs e)
  {
   canvas1.Width = 600;
   canvas1.Height = 600;
   setnet(Network, Positions);
   shownet(Network);
  }

  private void Find_MST_Click(object sender, 
                             RoutedEventArgs e)
  {
   prims();
  }

  void prims()
  {
   int[] included = new int[size]; 
   int[] excluded = new int[size];
   Single[,] finished = new Single[size, size];
   int start = 0;
   
int finish = 0;
   for (int i = 0; i < size; i++)

   {
    excluded[i] = i;
    included[i] = -1;
   }
   included[0] = excluded[R.Next(size)];
   excluded[included[0]] = -1;
   for (int n = 1; n < size; n++)
   {
    closest(n, ref start, ref finish,
                          included, excluded);
    included[n] = excluded[finish];
    excluded[finish] = -1;
    finished[included[n], included[start]] =
          Network[included[n], included[start]];
    finished[included[start], included[n]] =
          Network[included[start], included[n]];
   }
   shownet(finished);
  }


  private void closest(int n, ref int start,
    ref int finish,int[] included, int[] excluded)
  {
   Single smallest = -1;
   for (int i = 0; i < n; i++)
   {
    for (int j = 0; j < size; j++)
    {
     if (excluded[j] == -1) continue;
     if (smallest == -1) smallest =
          Network[included[i], excluded[j]];
     if (Network[included[i], excluded[j]] >
                            smallest) continue;
     smallest = Network[included[i], excluded[j]];
      start = i;
      finish = j;
     }
    }
   }
  }
 }

 

 


The Minimum Spanning Tree - Prim's Algorithm In Python

Finding the minimum spanning tree is one of the fundamental algorithms and it is important in computer science and practical programming. We take a look at the theory and the practice and discover how [ ... ]



Setting Up Site-To-Site OpenVPN

Setting up a point-to-point VPN is relatively easy but site-to-site is much more complicated involving certificates and more IP addresses than you can count. Find out how to do it using OpenVPN.


Other Projects


JetBrains RustRover Now Commercially Available
24/05/2024

JetBrains has announced the commercial release of RustRover, an IDE for Rust developers. The company describes RustRover  as combining advanced coding support with an integrated toolchain.



Celebrating Alan Turing
07/06/2024

Today, June 7th 2024 is the 70th anniversary of the untimely death of Alan Turing. While we now commemorate him for his contributions to code-breaking computer science and artificial intelligence, sev [ ... ]


More News

C book

 

Comments




or email your comment to: comments@i-programmer.info

<ASIN:1584885491>



Last Updated ( Thursday, 25 February 2016 )